Transversal momentum of the electroweak gauge boson and forward jets in high energy factorisation at the LHC Dissertation zur Erlangung des Doktorgrades

نویسندگان

  • Michal Deák
  • Hannes Jung
  • Joachim Bartels
  • Markus Diehl
  • Georg Steinbrueck
چکیده

Fixed order perturbation theory is not able to describe the transversal momentum spectrum of a electro-weak gauge boson. It is needed to resum whole classes of enhanced logarithmic terms. Depending on the phase space region different classes of logarithmic terms can be important. There are different approaches to sum such logarithmic terms including evolution equations of parton density functions. The evolution equation DGLAP which is valid for integrated parton density functions can be used to effectively produce unintegrated parton density functions using parton shower algorithm, but this approach involves kinematical approximations. With opening of phase space region ΛQCD ≪ μ2 ≪ s at the LHC approaches based on the BFKL and the CCFM equations are becoming more relevant. The BFKL and the CCFM equations define genuine unintegrated parton density functions which can be convoluted with matrix elements with off-shell initial state gluons. The off-shell matrix element for Z/W + QQ̄ production was calculated the Monte Carlo Cascade based on the CCFM evolution equation was used to study the phenomenology of this process concentrated on observables connected with the electro-weak gauge boson for the LHC kinematics. The widening of the peak of the transversal momentum spectrum of the electroweak boson is observed and discussed. The forward jet production using unintegrated parton density functions and off-shell matrix elements at the LHC was studied as a probe for small-x dynamics. Differences in azimuthal decorrelation and harder forward jet transversal momentum spectrum are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010